Quantum Fysica B

Olaf Scholten

Kernfysisch Versneller Instituut
NL-9747 AA Groningen
Toets 2, maandag 22 october, 2001
2 opgaven, iedere uitwerking op een apart vel papier met naam en studie nummer
Maak gebruik van de bijgevoegde formulelijst waar dat nodig lijkt.

Opgave 1

The electron in a hydrogen atom occupies the combined position and spin state:

$$
\Psi=R_{32}\left(i \sqrt{\frac{4}{5}} Y_{2}^{-1} \chi_{-}+\sqrt{\frac{1}{5}} Y_{2}^{-2} \chi_{+}\right)
$$

5 pnts

5 pnts b. What values might you get and with what probabilty if the following quantities are measured:
(a) S^{2}.
(b) S_{z}.
(c) J_{z} (where $\left.\vec{J}=\vec{L}+\vec{S}\right)$.
(d) J^{2} (you do NOT have to give probabilities for J^{2}).

5 pnts c. Calculate the expectation value of:
(a) L_{z}.
(b) J^{2}.
(c) $S_{x}+i S_{y}$.
(d) r.
d. (Really difficult, only for bonus points, only if you have time left)

Suppose you were able to measure the y-component of the spin of the electron at any place in space. At what polar angles is the probability unity for measuring $S_{y}=+\frac{1}{2} \hbar$.

Opgave 2

The matrices representing S_{x}, S_{y} and S_{z} for a particle of spin 1 (in the basis χ_{+}, χ_{0} and χ_{-}eigenstates of S_{z}) are:

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad S_{y}=\frac{i \hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

5 pnts a. Write the conmutation rules that these operators should obey. Use one of them to obtain S_{z} from S_{x} and S_{y}.
b. Suppose that the particle is placed in a magnetic field of magnitude B_{o} which is parallel to the z-axis. At $\mathrm{t}=0$ the the particle is the state $\left(\begin{array}{c}1 / 2 \\ 1 / \sqrt{2} \\ 1 / 2\end{array}\right)$.

5 pnts

5 pnts (b) Calculate t dependence of the expectation value of S_{x}.

